################## Installation Guide ################## XGBoost provides binary packages for some language bindings. The binary packages support the GPU algorithm (``device=cuda:0``) on machines with NVIDIA GPUs. Please note that **training with multiple GPUs is only supported for Linux platform**. See :doc:`gpu/index`. Also we have both stable releases and nightly builds, see below for how to install them. For building from source, visit :doc:`this page `. .. contents:: Contents Stable Release ============== Python ------ Pre-built binary wheels are uploaded to PyPI (Python Package Index) for each release. Supported platforms are Linux (x86_64, aarch64), Windows (x86_64) and MacOS (x86_64, Apple Silicon). .. code-block:: bash # Pip 21.3+ is required pip install xgboost You might need to run the command with ``--user`` flag or use ``virtualenv`` if you run into permission errors. .. note:: Parts of the Python package now require glibc 2.28+ Starting from 2.1.0, XGBoost Python package will be distributed in two variants: * ``manylinux_2_28``: for recent Linux distros with glibc 2.28 or newer. This variant comes with all features enabled. * ``manylinux2014``: for old Linux distros with glibc older than 2.28. This variant does not support GPU algorithms or federated learning. The ``pip`` package manager will automatically choose the correct variant depending on your system. Starting from **May 31, 2025**, we will stop distributing the ``manylinux2014`` variant and exclusively distribute the ``manylinux_2_28`` variant. We made this decision so that our CI/CD pipeline won't have depend on software components that reached end-of-life (such as CentOS 7). We strongly encourage everyone to migrate to recent Linux distros in order to use future versions of XGBoost. Note. If you want to use GPU algorithms or federated learning on an older Linux distro, you have two alternatives: 1. Upgrade to a recent Linux distro with glibc 2.28+. OR 2. Build XGBoost from the source. .. note:: Windows users need to install Visual C++ Redistributable XGBoost requires DLLs from `Visual C++ Redistributable `_ in order to function, so make sure to install it. Exception: If you have Visual Studio installed, you already have access to necessary libraries and thus don't need to install Visual C++ Redistributable. Capabilities of binary wheels for each platform: .. |tick| unicode:: U+2714 .. |cross| unicode:: U+2718 +---------------------+---------+----------------------+ | Platform | GPU | Multi-Node-Multi-GPU | +=====================+=========+======================+ | Linux x86_64 | |tick| | |tick| | +---------------------+---------+----------------------+ | Linux aarch64 | |cross| | |cross| | +---------------------+---------+----------------------+ | MacOS x86_64 | |cross| | |cross| | +---------------------+---------+----------------------+ | MacOS Apple Silicon | |cross| | |cross| | +---------------------+---------+----------------------+ | Windows | |tick| | |cross| | +---------------------+---------+----------------------+ Minimal installation (CPU-only) ******************************* The default installation with ``pip`` will install the full XGBoost package, including the support for the GPU algorithms and federated learning. You may choose to reduce the size of the installed package and save the disk space, by opting to install ``xgboost-cpu`` instead: .. code-block:: bash pip install xgboost-cpu The ``xgboost-cpu`` variant will have drastically smaller disk footprint, but does not provide some features, such as the GPU algorithms and federated learning. Currently, ``xgboost-cpu`` package is provided for x86_64 (amd64) Linux and Windows platforms. Conda ***** You may use the Conda packaging manager to install XGBoost: .. code-block:: bash conda install -c conda-forge py-xgboost Conda should be able to detect the existence of a GPU on your machine and install the correct variant of XGBoost. If you run into issues, try indicating the variant explicitly: .. code-block:: bash # CPU only conda install -c conda-forge py-xgboost-cpu # Use NVIDIA GPU conda install -c conda-forge py-xgboost-gpu To force the installation of the GPU variant on a machine that does not have an NVIDIA GPU, use environment variable ``CONDA_OVERRIDE_CUDA``, as described in `"Managing Virtual Packages" in the conda docs `_. .. code-block:: bash export CONDA_OVERRIDE_CUDA="12.5" conda install -c conda-forge py-xgboost-gpu Visit the `Miniconda website `_ to obtain Conda. .. note:: ``py-xgboost-gpu`` not available on Windows. The ``py-xgboost-gpu`` is currently not available on Windows. If you are using Windows, please use ``pip`` to install XGBoost with GPU support. R - * From CRAN: .. code-block:: R install.packages("xgboost") .. note:: Using all CPU cores (threads) on Mac OSX If you are using Mac OSX, you should first install OpenMP library (``libomp``) by running .. code-block:: bash brew install libomp and then run ``install.packages("xgboost")``. Without OpenMP, XGBoost will only use a single CPU core, leading to suboptimal training speed. * We also provide **experimental** pre-built binary with GPU support. With this binary, you will be able to use the GPU algorithm without building XGBoost from the source. Download the binary package from the Releases page. The file name will be of the form ``xgboost_r_gpu_[os]_[version].tar.gz``, where ``[os]`` is either ``linux`` or ``win64``. (We build the binaries for 64-bit Linux and Windows.) Then install XGBoost by running: .. code-block:: bash # Install dependencies R -q -e "install.packages(c('data.table', 'jsonlite'))" # Install XGBoost R CMD INSTALL ./xgboost_r_gpu_linux.tar.gz JVM --- * XGBoost4j-Spark .. code-block:: xml :caption: Maven ... 2.12 ... ml.dmlc xgboost4j-spark_${scala.binary.version} latest_version_num .. code-block:: scala :caption: sbt libraryDependencies ++= Seq( "ml.dmlc" %% "xgboost4j-spark" % "latest_version_num" ) * XGBoost4j-Spark-GPU .. code-block:: xml :caption: Maven ... 2.12 ... ml.dmlc xgboost4j-spark-gpu_${scala.binary.version} latest_version_num .. code-block:: scala :caption: sbt libraryDependencies ++= Seq( "ml.dmlc" %% "xgboost4j-spark-gpu" % "latest_version_num" ) This will check out the latest stable version from the Maven Central. For the latest release version number, please check `release page `_. To enable the GPU algorithm (``device='cuda'``), use artifacts ``xgboost4j-spark-gpu_2.12`` instead (note the ``gpu`` suffix). .. note:: Windows not supported in the JVM package Currently, XGBoost4J-Spark does not support Windows platform, as the distributed training algorithm is inoperational for Windows. Please use Linux or MacOS. Nightly Build ============= Python ------ Nightly builds are available. You can go to `this page `_, find the wheel with the commit ID you want and install it with pip: .. code-block:: bash pip install The capability of Python pre-built wheel is the same as stable release. R - Other than standard CRAN installation, we also provide *experimental* pre-built binary on with GPU support. You can go to `this page `_, Find the commit ID you want to install and then locate the file ``xgboost_r_gpu_[os]_[commit].tar.gz``, where ``[os]`` is either ``linux`` or ``win64``. (We build the binaries for 64-bit Linux and Windows.) Download it and run the following commands: .. code-block:: bash # Install dependencies R -q -e "install.packages(c('data.table', 'jsonlite', 'remotes'))" # Install XGBoost R CMD INSTALL ./xgboost_r_gpu_linux.tar.gz JVM --- * XGBoost4j/XGBoost4j-Spark .. code-block:: xml :caption: Maven XGBoost4J Snapshot Repo XGBoost4J Snapshot Repo https://s3-us-west-2.amazonaws.com/xgboost-maven-repo/snapshot/ .. code-block:: scala :caption: sbt resolvers += "XGBoost4J Snapshot Repo" at "https://s3-us-west-2.amazonaws.com/xgboost-maven-repo/snapshot/" Then add XGBoost4J-Spark as a dependency: .. code-block:: xml :caption: maven ... 2.12 ml.dmlc xgboost4j-spark_${scala.binary.version} latest_version_num-SNAPSHOT .. code-block:: scala :caption: sbt libraryDependencies ++= Seq( "ml.dmlc" %% "xgboost4j-spark" % "latest_version_num-SNAPSHOT" ) * XGBoost4j-Spark-GPU .. code-block:: xml :caption: maven ... 2.12 ml.dmlc xgboost4j-spark-gpu_${scala.binary.version} latest_version_num-SNAPSHOT .. code-block:: scala :caption: sbt libraryDependencies ++= Seq( "ml.dmlc" %% "xgboost4j-spark-gpu" % "latest_version_num-SNAPSHOT" ) Look up the ``version`` field in `pom.xml `_ to get the correct version number. The SNAPSHOT JARs are hosted by the XGBoost project. Every commit in the ``master`` branch will automatically trigger generation of a new SNAPSHOT JAR. You can control how often Maven should upgrade your SNAPSHOT installation by specifying ``updatePolicy``. See `here `_ for details. You can browse the file listing of the Maven repository at https://s3-us-west-2.amazonaws.com/xgboost-maven-repo/list.html. To enable the GPU algorithm (``device='cuda'``), use artifacts ``xgboost4j-gpu_2.12`` and ``xgboost4j-spark-gpu_2.12`` instead (note the ``gpu`` suffix).