##########################################################
Migration Guide: How to migrate to XGBoost4j-Spark jvm 3.x
##########################################################
XGBoost4j-Spark jvm packages underwent significant modifications in version 3.0,
which may cause compatibility issues with existing user code.
This guide will walk you through the process of updating your code to ensure
it's compatible with XGBoost4j-Spark 3.0 and later versions.
************************
XGBoost4j Spark Packages
************************
XGBoost4j-Spark 3.0 has assembled xgboost4j package into xgboost4j-spark_2.12-3.0.0.jar, which means
you can now simply use `xgboost4j-spark` for your application.
* For CPU
.. code-block:: xml
ml.dmlc
xgboost4j-spark_${scala.binary.version}
3.0.0
* For GPU
.. code-block:: xml
ml.dmlc
xgboost4j-spark-gpu_${scala.binary.version}
3.0.0
When submitting the XGBoost application to the Spark cluster, you only need to specify the single `xgboost4j-spark` package.
* For CPU
.. code-block:: bash
spark-submit \
--jars xgboost4j-spark_2.12-3.0.0.jar \
... \
* For GPU
.. code-block:: bash
spark-submit \
--jars xgboost4j-spark-gpu_2.12-3.0.0.jar \
... \
***************
XGBoost Ranking
***************
Learning to rank using XGBoostRegressor has been replaced by a dedicated `XGBoostRanker`, which is specifically designed
to support ranking algorithms.
.. code-block:: scala
// before xgboost4j-spark 3.0
val regressor = new XGBoostRegressor().setObjective("rank:ndcg")
// after xgboost4j-spark 3.0
val ranker = new XGBoostRanker()
******************
Removed Parameters
******************
Starting from xgboost4j-spark 3.0, below parameters are removed.
- cacheTrainingSet
If you wish to cache the training dataset, you have the option to implement caching
in your code prior to fitting the data to an estimator.
.. code-block:: scala
val df = input.cache()
val model = new XGBoostClassifier().fit(df)
- trainTestRatio
The following method can be employed to do the evaluation.
.. code-block:: scala
val Array(train, eval) = trainDf.randomSplit(Array(0.7, 0.3))
val classifier = new XGBoostClassifer().setEvalDataset(eval)
val model = classifier.fit(train)
- tracker_conf
The following method can be used to configure RabitTracker.
.. code-block:: scala
val classifier = new XGBoostClassifer()
.setRabitTrackerTimeout(100)
.setRabitTrackerHostIp("192.168.0.2")
.setRabitTrackerPort(19203)
- rabitRingReduceThreshold
- rabitTimeout
- rabitConnectRetry
- singlePrecisionHistogram
- lambdaBias
- objectiveType