Source code for hypothesis._settings

# This file is part of Hypothesis, which may be found at
# https://github.com/HypothesisWorks/hypothesis/
#
# Copyright the Hypothesis Authors.
# Individual contributors are listed in AUTHORS.rst and the git log.
#
# This Source Code Form is subject to the terms of the Mozilla Public License,
# v. 2.0. If a copy of the MPL was not distributed with this file, You can
# obtain one at https://mozilla.org/MPL/2.0/.

"""The settings module configures runtime options for Hypothesis.

Either an explicit settings object can be used or the default object on
this module can be modified.
"""

import contextlib
import datetime
import inspect
import os
import warnings
from collections.abc import Collection, Generator, Sequence
from enum import Enum, EnumMeta, IntEnum, unique
from typing import (
    TYPE_CHECKING,
    Any,
    ClassVar,
    Optional,
    TypeVar,
    Union,
)

from hypothesis.errors import (
    HypothesisDeprecationWarning,
    InvalidArgument,
)
from hypothesis.internal.conjecture.providers import AVAILABLE_PROVIDERS
from hypothesis.internal.reflection import get_pretty_function_description
from hypothesis.internal.validation import check_type, try_convert
from hypothesis.utils.conventions import not_set
from hypothesis.utils.dynamicvariables import DynamicVariable

if TYPE_CHECKING:
    from hypothesis.database import ExampleDatabase

__all__ = ["settings"]

T = TypeVar("T")
all_settings: list[str] = [
    "max_examples",
    "derandomize",
    "database",
    "verbosity",
    "phases",
    "stateful_step_count",
    "report_multiple_bugs",
    "suppress_health_check",
    "deadline",
    "print_blob",
    "backend",
]


[docs] @unique class Verbosity(IntEnum): """Options for the |settings.verbosity| argument to |@settings|.""" quiet = 0 """ Hypothesis will not print any output, not even the final falsifying example. """ normal = 1 """ Standard verbosity. Hypothesis will print the falsifying example, alongside any notes made with |note| (only for the falsfying example). """ verbose = 2 """ Increased verbosity. In addition to everything in |Verbosity.normal|, Hypothesis will print each example as it tries it, as well as any notes made with |note| for every example. Hypothesis will also print shrinking attempts. """ debug = 3 """ Even more verbosity. Useful for debugging Hypothesis internals. You probably don't want this. """ def __repr__(self) -> str: return f"Verbosity.{self.name}"
[docs] @unique class Phase(IntEnum): """Options for the |settings.phases| argument to |@settings|.""" explicit = 0 """ Controls whether explicit examples are run. """ reuse = 1 """ Controls whether previous examples will be reused. """ generate = 2 """ Controls whether new examples will be generated. """ target = 3 """ Controls whether examples will be mutated for targeting. """ shrink = 4 """ Controls whether examples will be shrunk. """ explain = 5 """ Controls whether Hypothesis attempts to explain test failures. The explain phase has two parts, each of which is best-effort - if Hypothesis can't find a useful explanation, we'll just print the minimal failing example. """ def __repr__(self) -> str: return f"Phase.{self.name}"
class HealthCheckMeta(EnumMeta): def __iter__(self): deprecated = (HealthCheck.return_value, HealthCheck.not_a_test_method) return iter(x for x in super().__iter__() if x not in deprecated)
[docs] @unique class HealthCheck(Enum, metaclass=HealthCheckMeta): """Arguments for :attr:`~hypothesis.settings.suppress_health_check`. Each member of this enum is a specific health check to suppress. """ def __repr__(self) -> str: return f"{self.__class__.__name__}.{self.name}" @classmethod def all(cls) -> list["HealthCheck"]: # Skipping of deprecated attributes is handled in HealthCheckMeta.__iter__ note_deprecation( "`HealthCheck.all()` is deprecated; use `list(HealthCheck)` instead.", since="2023-04-16", has_codemod=True, stacklevel=1, ) return list(HealthCheck) data_too_large = 1 """Checks if too many examples are aborted for being too large. This is measured by the number of random choices that Hypothesis makes in order to generate something, not the size of the generated object. For example, choosing a 100MB object from a predefined list would take only a few bits, while generating 10KB of JSON from scratch might trigger this health check. """ filter_too_much = 2 """Check for when the test is filtering out too many examples, either through use of :func:`~hypothesis.assume()` or |strategy.filter|, or occasionally for Hypothesis internal reasons.""" too_slow = 3 """Check for when your data generation is extremely slow and likely to hurt testing.""" return_value = 5 """Deprecated; we always error if a test returns a non-None value.""" large_base_example = 7 """Checks if the natural example to shrink towards is very large.""" not_a_test_method = 8 """Deprecated; we always error if :func:`@given <hypothesis.given>` is applied to a method defined by :class:`python:unittest.TestCase` (i.e. not a test).""" function_scoped_fixture = 9 """Checks if :func:`@given <hypothesis.given>` has been applied to a test with a pytest function-scoped fixture. Function-scoped fixtures run once for the whole function, not once per example, and this is usually not what you want. Because of this limitation, tests that need to set up or reset state for every example need to do so manually within the test itself, typically using an appropriate context manager. Suppress this health check only in the rare case that you are using a function-scoped fixture that does not need to be reset between individual examples, but for some reason you cannot use a wider fixture scope (e.g. session scope, module scope, class scope). This check requires the :ref:`Hypothesis pytest plugin<pytest-plugin>`, which is enabled by default when running Hypothesis inside pytest.""" differing_executors = 10 """Checks if :func:`@given <hypothesis.given>` has been applied to a test which is executed by different :ref:`executors<custom-function-execution>`. If your test function is defined as a method on a class, that class will be your executor, and subclasses executing an inherited test is a common way for things to go wrong. The correct fix is often to bring the executor instance under the control of hypothesis by explicit parametrization over, or sampling from, subclasses, or to refactor so that :func:`@given <hypothesis.given>` is specified on leaf subclasses.""" nested_given = 11 """Checks if :func:`@given <hypothesis.given>` is used inside another :func:`@given <hypothesis.given>`. This results in quadratic generation and shrinking behavior, and can usually be expressed more cleanly by using :func:`~hypothesis.strategies.data` to replace the inner :func:`@given <hypothesis.given>`. Nesting @given can be appropriate if you set appropriate limits for the quadratic behavior and cannot easily reexpress the inner function with :func:`~hypothesis.strategies.data`. To suppress this health check, set ``suppress_health_check=[HealthCheck.nested_given]`` on the outer :func:`@given <hypothesis.given>`. Setting it on the inner :func:`@given <hypothesis.given>` has no effect. If you have more than one level of nesting, add a suppression for this health check to every :func:`@given <hypothesis.given>` except the innermost one. """
class duration(datetime.timedelta): """A timedelta specifically measured in milliseconds.""" def __repr__(self) -> str: ms = self.total_seconds() * 1000 return f"timedelta(milliseconds={int(ms) if ms == int(ms) else ms!r})" def is_in_ci() -> bool: # GitHub Actions, Travis CI and AppVeyor have "CI" # Azure Pipelines has "TF_BUILD" return "CI" in os.environ or "TF_BUILD" in os.environ default_variable = DynamicVariable[Optional["settings"]](None) def _validate_choices(name: str, value: T, *, choices: Sequence[object]) -> T: if value not in choices: msg = f"Invalid {name}, {value!r}. Valid choices: {choices!r}" raise InvalidArgument(msg) return value def _validate_max_examples(max_examples: int) -> int: check_type(int, max_examples, name="max_examples") if max_examples < 1: raise InvalidArgument( f"max_examples={max_examples!r} must be at least one. If you want " "to disable generation entirely, use phases=[Phase.explicit] instead." ) return max_examples def _validate_database( database: Optional["ExampleDatabase"], ) -> Optional["ExampleDatabase"]: from hypothesis.database import ExampleDatabase if database is None or isinstance(database, ExampleDatabase): return database raise InvalidArgument( "Arguments to the database setting must be None or an instance of " "ExampleDatabase. Use one of the database classes in " "hypothesis.database" ) def _validate_phases(phases: Collection[Phase]) -> Sequence[Phase]: phases = tuple(phases) for phase in phases: if not isinstance(phase, Phase): raise InvalidArgument(f"{phase!r} is not a valid phase") return tuple(phase for phase in list(Phase) if phase in phases) def _validate_stateful_step_count(stateful_step_count: int) -> int: check_type(int, stateful_step_count, name="stateful_step_count") if stateful_step_count < 1: raise InvalidArgument( f"stateful_step_count={stateful_step_count!r} must be at least one." ) return stateful_step_count def _validate_suppress_health_check(suppressions): suppressions = try_convert(tuple, suppressions, "suppress_health_check") for health_check in suppressions: if not isinstance(health_check, HealthCheck): raise InvalidArgument( f"Non-HealthCheck value {health_check!r} of type {type(health_check).__name__} " "is invalid in suppress_health_check." ) if health_check in (HealthCheck.return_value, HealthCheck.not_a_test_method): note_deprecation( f"The {health_check.name} health check is deprecated, because this is always an error.", since="2023-03-15", has_codemod=False, stacklevel=2, ) return suppressions def _validate_deadline( x: Union[int, float, datetime.timedelta, None], ) -> Optional[duration]: if x is None: return x invalid_deadline_error = InvalidArgument( f"deadline={x!r} (type {type(x).__name__}) must be a timedelta object, " "an integer or float number of milliseconds, or None to disable the " "per-test-case deadline." ) if isinstance(x, (int, float)): if isinstance(x, bool): raise invalid_deadline_error try: x = duration(milliseconds=x) except OverflowError: raise InvalidArgument( f"deadline={x!r} is invalid, because it is too large to represent " "as a timedelta. Use deadline=None to disable deadlines." ) from None if isinstance(x, datetime.timedelta): if x <= datetime.timedelta(0): raise InvalidArgument( f"deadline={x!r} is invalid, because it is impossible to meet a " "deadline <= 0. Use deadline=None to disable deadlines." ) return duration(seconds=x.total_seconds()) raise invalid_deadline_error def _validate_backend(backend: str) -> str: if backend not in AVAILABLE_PROVIDERS: if backend == "crosshair": # pragma: no cover install = '`pip install "hypothesis[crosshair]"` and try again.' raise InvalidArgument(f"backend={backend!r} is not available. {install}") raise InvalidArgument( f"backend={backend!r} is not available - maybe you need to install a plugin?" f"\n Installed backends: {sorted(AVAILABLE_PROVIDERS)!r}" ) return backend class settingsMeta(type): def __init__(cls, *args, **kwargs): super().__init__(*args, **kwargs) @property def default(cls) -> Optional["settings"]: v = default_variable.value if v is not None: return v if getattr(settings, "_current_profile", None) is not None: assert settings._current_profile is not None settings.load_profile(settings._current_profile) assert default_variable.value is not None return default_variable.value def __setattr__(cls, name: str, value: object) -> None: if name == "default": raise AttributeError( "Cannot assign to the property settings.default - " "consider using settings.load_profile instead." ) elif not name.startswith("_"): raise AttributeError( f"Cannot assign hypothesis.settings.{name}={value!r} - the settings " "class is immutable. You can change the global default " "settings with settings.load_profile, or use @settings(...) " "to decorate your test instead." ) super().__setattr__(name, value) def __repr__(cls): return "hypothesis.settings"
[docs] class settings(metaclass=settingsMeta): """A settings object configures options including verbosity, runtime controls, persistence, determinism, and more. Default values are picked up from the settings.default object and changes made there will be picked up in newly created settings. """ _profiles: ClassVar[dict[str, "settings"]] = {} _current_profile: ClassVar[Optional[str]] = None def __init__( self, parent: Optional["settings"] = None, *, # This looks pretty strange, but there's good reason: we want Mypy to detect # bad calls downstream, but not to freak out about the `= not_set` part even # though it's not semantically valid to pass that as an argument value. # The intended use is "like **kwargs, but more tractable for tooling". max_examples: int = not_set, # type: ignore derandomize: bool = not_set, # type: ignore database: Optional["ExampleDatabase"] = not_set, # type: ignore verbosity: "Verbosity" = not_set, # type: ignore phases: Collection["Phase"] = not_set, # type: ignore stateful_step_count: int = not_set, # type: ignore report_multiple_bugs: bool = not_set, # type: ignore suppress_health_check: Collection["HealthCheck"] = not_set, # type: ignore deadline: Union[int, float, datetime.timedelta, None] = not_set, # type: ignore print_blob: bool = not_set, # type: ignore backend: str = not_set, # type: ignore ) -> None: self._in_definition = True if parent is not None: check_type(settings, parent, "parent") if derandomize not in (not_set, False): if database not in (not_set, None): # type: ignore raise InvalidArgument( "derandomize=True implies database=None, so passing " f"{database=} too is invalid." ) database = None # fallback is None if we're creating the default settings object, and # the parent (or default settings object) otherwise self._fallback = parent or settings.default self._max_examples = ( self._fallback.max_examples # type: ignore if max_examples is not_set # type: ignore else _validate_max_examples(max_examples) ) self._derandomize = ( self._fallback.derandomize # type: ignore if derandomize is not_set # type: ignore else _validate_choices("derandomize", derandomize, choices=[True, False]) ) if database is not not_set: # type: ignore database = _validate_database(database) self._database = database self._cached_database = None self._verbosity = ( self._fallback.verbosity # type: ignore if verbosity is not_set # type: ignore else _validate_choices("verbosity", verbosity, choices=tuple(Verbosity)) ) self._phases = ( self._fallback.phases # type: ignore if phases is not_set # type: ignore else _validate_phases(phases) ) self._stateful_step_count = ( self._fallback.stateful_step_count # type: ignore if stateful_step_count is not_set # type: ignore else _validate_stateful_step_count(stateful_step_count) ) self._report_multiple_bugs = ( self._fallback.report_multiple_bugs # type: ignore if report_multiple_bugs is not_set # type: ignore else _validate_choices( "report_multiple_bugs", report_multiple_bugs, choices=[True, False] ) ) self._suppress_health_check = ( self._fallback.suppress_health_check # type: ignore if suppress_health_check is not_set # type: ignore else _validate_suppress_health_check(suppress_health_check) ) self._deadline = ( self._fallback.deadline # type: ignore if deadline is not_set else _validate_deadline(deadline) ) self._print_blob = ( self._fallback.print_blob # type: ignore if print_blob is not_set # type: ignore else _validate_choices("print_blob", print_blob, choices=[True, False]) ) self._backend = ( self._fallback.backend # type: ignore if backend is not_set # type: ignore else _validate_backend(backend) ) self._in_definition = False @property def max_examples(self): """ Once this many satisfying examples have been considered without finding any counter-example, Hypothesis will stop looking. Note that we might call your test function fewer times if we find a bug early or can tell that we've exhausted the search space; or more if we discard some examples due to use of .filter(), assume(), or a few other things that can prevent the test case from completing successfully. The default value is chosen to suit a workflow where the test will be part of a suite that is regularly executed locally or on a CI server, balancing total running time against the chance of missing a bug. If you are writing one-off tests, running tens of thousands of examples is quite reasonable as Hypothesis may miss uncommon bugs with default settings. For very complex code, we have observed Hypothesis finding novel bugs after *several million* examples while testing :pypi:`SymPy <sympy>`. If you are running more than 100k examples for a test, consider using our :ref:`integration for coverage-guided fuzzing <fuzz_one_input>` - it really shines when given minutes or hours to run. The default max examples is ``100``. """ return self._max_examples @property def derandomize(self): """ If True, seed Hypothesis' random number generator using a hash of the test function, so that every run will test the same set of examples until you update Hypothesis, Python, or the test function. This allows you to `check for regressions and look for bugs <https://blog.nelhage.com/post/two-kinds-of-testing/>`__ using :ref:`separate settings profiles <settings_profiles>` - for example running quick deterministic tests on every commit, and a longer non-deterministic nightly testing run. The default is ``False``. If running on CI, the default is ``True`` instead. """ return self._derandomize @property def database(self): """ An instance of |ExampleDatabase| that will be used to save examples to and load previous examples from. If ``None``, no storage will be used. See the :ref:`database documentation <database>` for a list of built-in example database implementations, and how to define custom implementations. """ from hypothesis.database import _db_for_path # settings.database has two conflicting requirements: # * The default settings should respect changes to set_hypothesis_home_dir # in-between accesses # * `s.database is s.database` should be true, except for the default settings # # We therefore cache s.database for everything except the default settings, # which always recomputes dynamically. if self._fallback is None: # if self._fallback is None, we are the default settings, at which point # we should recompute the database dynamically assert self._database is not_set return _db_for_path(not_set) # otherwise, we cache the database if self._cached_database is None: self._cached_database = ( self._fallback.database if self._database is not_set else self._database ) return self._cached_database @property def verbosity(self): """ Control the verbosity level of Hypothesis messages. To see what's going on while Hypothesis runs your tests, you can turn up the verbosity setting. .. code-block:: pycon >>> from hypothesis import settings, Verbosity >>> from hypothesis.strategies import lists, integers >>> @given(lists(integers())) ... @settings(verbosity=Verbosity.verbose) ... def f(x): ... assert not any(x) ... f() Trying example: [] Falsifying example: [-1198601713, -67, 116, -29578] Shrunk example to [-1198601713] Shrunk example to [-32896] Shrunk example to [-128] Shrunk example to [32] Shrunk example to [3] Shrunk example to [1] [1] The four levels are |Verbosity.quiet|, |Verbosity.normal|, |Verbosity.verbose|, and |Verbosity.debug|. |Verbosity.normal| is the default. For |Verbosity.quiet|, Hypothesis will not print anything out, not even the final falsifying example. |Verbosity.debug| is basically |Verbosity.verbose| but a bit more so. You probably don't want it. If you are using :pypi:`pytest`, you may also need to :doc:`disable output capturing for passing tests <pytest:how-to/capture-stdout-stderr>` to see verbose output as tests run. """ return self._verbosity @property def phases(self): """ Control which phases should be run. Hypothesis divides tests into logically distinct phases. - |Phase.explicit|: Running explicit examples from |@example|. - |Phase.reuse|: Running examples from the database which previously failed. - |Phase.generate|: Generating new random examples. - |Phase.target|: Mutating examples for :ref:`targeted property-based testing <targeted>`. Requires |Phase.generate|. - |Phase.shrink|: Shrinking failing examples. - |Phase.explain|: Attempting to explain why a failure occurred. Requires |Phase.shrink|. Following the first failure, Hypothesis will (usually, depending on which |Phase| is enabled) track which lines of code are always run on failing but never on passing inputs. On 3.12+, this uses :mod:`sys.monitoring`, while 3.11 and earlier uses :func:`python:sys.settrace`. For python 3.11 and earlier, we therefore automatically disable the explain phase on PyPy, or if you are using :pypi:`coverage` or a debugger. If there are no clearly suspicious lines of code, :pep:`we refuse the temptation to guess <20>`. After shrinking to a minimal failing example, Hypothesis will try to find parts of the example -- e.g. separate args to |@given| -- which can vary freely without changing the result of that minimal failing example. If the automated experiments run without finding a passing variation, we leave a comment in the final report: .. code-block:: python test_x_divided_by_y( x=0, # or any other generated value y=0, ) Just remember that the *lack* of an explanation sometimes just means that Hypothesis couldn't efficiently find one, not that no explanation (or simpler failing example) exists. The phases setting provides you with fine grained control over which of these run, with each phase corresponding to a value on the |Phase| enum. The phases argument accepts a collection with any subset of these. e.g. ``settings(phases=[Phase.generate, Phase.shrink])`` will generate new examples and shrink them, but will not run explicit examples or reuse previous failures, while ``settings(phases=[Phase.explicit])`` will only run the explicit examples. """ return self._phases @property def stateful_step_count(self): """ The maximum number of times to call an additional |@rule| method in :ref:`stateful testing <stateful>` before we give up on finding a bug. Note that this setting is effectively multiplicative with max_examples, as each example will run for a maximum of ``stateful_step_count`` steps. The default stateful step count is ``50``. """ return self._stateful_step_count @property def report_multiple_bugs(self): """ Because Hypothesis runs the test many times, it can sometimes find multiple bugs in a single run. Reporting all of them at once is usually very useful, but replacing the exceptions can occasionally clash with debuggers. If disabled, only the exception with the smallest minimal example is raised. The default value is ``True``. """ return self._report_multiple_bugs @property def suppress_health_check(self): """ A list of |HealthCheck| items to disable. """ return self._suppress_health_check @property def deadline(self): """ The maximum allowed duration of an individual test case, in milliseconds. You can pass an integer, float, or timedelta. If ``None``, the deadline is disabled entirely. We treat the deadline as a soft limit in some cases, where that would avoid flakiness due to timing variability. The default deadline is 200 milliseconds. If running on CI, the default is ``None`` instead. """ return self._deadline @property def print_blob(self): """ If set to ``True``, Hypothesis will print code for failing examples that can be used with :func:`@reproduce_failure <hypothesis.reproduce_failure>` to reproduce the failing example. The default value is ``False``. If running on CI, the default is ``True`` instead. """ return self._print_blob @property def backend(self): """ .. warning:: EXPERIMENTAL AND UNSTABLE - see :ref:`alternative-backends`. The importable name of a backend which Hypothesis should use to generate primitive types. We support heuristic-random, solver-based, and fuzzing-based backends. """ return self._backend def __call__(self, test: T) -> T: """Make the settings object (self) an attribute of the test. The settings are later discovered by looking them up on the test itself. """ # Aliasing as Any avoids mypy errors (attr-defined) when accessing and # setting custom attributes on the decorated function or class. _test: Any = test # Using the alias here avoids a mypy error (return-value) later when # ``test`` is returned, because this check results in type refinement. if not callable(_test): raise InvalidArgument( "settings objects can be called as a decorator with @given, " f"but decorated {test=} is not callable." ) if inspect.isclass(test): from hypothesis.stateful import RuleBasedStateMachine if issubclass(_test, RuleBasedStateMachine): attr_name = "_hypothesis_internal_settings_applied" if getattr(test, attr_name, False): raise InvalidArgument( "Applying the @settings decorator twice would " "overwrite the first version; merge their arguments " "instead." ) setattr(test, attr_name, True) _test.TestCase.settings = self return test # type: ignore else: raise InvalidArgument( "@settings(...) can only be used as a decorator on " "functions, or on subclasses of RuleBasedStateMachine." ) if hasattr(_test, "_hypothesis_internal_settings_applied"): # Can't use _hypothesis_internal_use_settings as an indicator that # @settings was applied, because @given also assigns that attribute. descr = get_pretty_function_description(test) raise InvalidArgument( f"{descr} has already been decorated with a settings object.\n" f" Previous: {_test._hypothesis_internal_use_settings!r}\n" f" This: {self!r}" ) _test._hypothesis_internal_use_settings = self _test._hypothesis_internal_settings_applied = True return test def __setattr__(self, name: str, value: object) -> None: if not name.startswith("_") and not self._in_definition: raise AttributeError("settings objects are immutable") return super().__setattr__(name, value) def __repr__(self) -> str: bits = sorted( f"{name}={getattr(self, name)!r}" for name in all_settings if (name != "backend" or len(AVAILABLE_PROVIDERS) > 1) # experimental ) return "settings({})".format(", ".join(bits)) def show_changed(self) -> str: bits = [] for name in all_settings: value = getattr(self, name) if value != getattr(default, name): bits.append(f"{name}={value!r}") return ", ".join(sorted(bits, key=len))
[docs] @staticmethod def register_profile( name: str, parent: Optional["settings"] = None, **kwargs: Any, ) -> None: """Registers a collection of values to be used as a settings profile. Settings profiles can be loaded by name - for example, you might create a 'fast' profile which runs fewer examples, keep the 'default' profile, and create a 'ci' profile that increases the number of examples and uses a different database to store failures. The arguments to this method are exactly as for :class:`~hypothesis.settings`: optional ``parent`` settings, and keyword arguments for each setting that will be set differently to parent (or settings.default, if parent is None). If you register a profile that has already been defined and that profile is the currently loaded profile, the new changes will take effect immediately, and do not require reloading the profile. """ check_type(str, name, "name") # if we just pass the parent and no kwargs, like # settings.register_profile(settings(max_examples=10)) # then optimize out the pointless intermediate settings object which # would just forward everything to the parent. settings._profiles[name] = ( parent if parent is not None and not kwargs else settings(parent=parent, **kwargs) ) if settings._current_profile == name: settings.load_profile(name)
[docs] @staticmethod def get_profile(name: str) -> "settings": """Return the profile with the given name.""" check_type(str, name, "name") try: return settings._profiles[name] except KeyError: raise InvalidArgument(f"Profile {name!r} is not registered") from None
[docs] @staticmethod def load_profile(name: str) -> None: """Loads in the settings defined in the profile provided. If the profile does not exist, InvalidArgument will be raised. Any setting not defined in the profile will be the library defined default for that setting. """ check_type(str, name, "name") settings._current_profile = name default_variable.value = settings.get_profile(name)
@contextlib.contextmanager def local_settings(s: settings) -> Generator[settings, None, None]: with default_variable.with_value(s): yield s def note_deprecation( message: str, *, since: str, has_codemod: bool, stacklevel: int = 0 ) -> None: if since != "RELEASEDAY": date = datetime.date.fromisoformat(since) assert datetime.date(2021, 1, 1) <= date if has_codemod: message += ( "\n The `hypothesis codemod` command-line tool can automatically " "refactor your code to fix this warning." ) warnings.warn(HypothesisDeprecationWarning(message), stacklevel=2 + stacklevel) default = settings( max_examples=100, derandomize=False, database=not_set, # type: ignore verbosity=Verbosity.normal, phases=tuple(Phase), stateful_step_count=50, report_multiple_bugs=True, suppress_health_check=(), deadline=duration(milliseconds=200), print_blob=False, backend="hypothesis", ) settings.register_profile("default", default) settings.load_profile("default") assert settings.default is not None CI = settings( derandomize=True, deadline=None, database=None, print_blob=True, suppress_health_check=[HealthCheck.too_slow], ) settings.register_profile("ci", CI) if is_in_ci(): # pragma: no cover # covered in ci, but not locally settings.load_profile("ci") assert settings.default is not None # Check that the kwonly args to settings.__init__ is the same as the set of # defined settings - in case we've added or remove something from one but # not the other. assert set(all_settings) == { p.name for p in inspect.signature(settings.__init__).parameters.values() if p.kind == inspect.Parameter.KEYWORD_ONLY }