Package index
-
xgboost()
- Fit XGBoost Model
-
predict(<xgboost>)
- Compute predictions from XGBoost model on new data
-
print(<xgboost>)
- Print info from XGBoost model
-
agaricus.train
- Training part from Mushroom Data Set
-
agaricus.test
- Test part from Mushroom Data Set
-
xgb.config()
`xgb.config<-`()
- Accessors for model parameters as JSON string
-
xgb.set.config()
xgb.get.config()
- Set and get global configuration
-
xgb.DMatrix()
xgb.QuantileDMatrix()
- Construct xgb.DMatrix object
-
xgb.DMatrix.hasinfo()
- Check whether DMatrix object has a field
-
xgb.DMatrix.save()
- Save xgb.DMatrix object to binary file
-
dim(<xgb.DMatrix>)
- Dimensions of xgb.DMatrix
-
dimnames(<xgb.DMatrix>)
`dimnames<-`(<xgb.DMatrix>)
- Handling of column names of
xgb.DMatrix
-
print(<xgb.DMatrix>)
- Print xgb.DMatrix
-
xgb.DataBatch()
- Structure for Data Batches
-
xgb.DataIter()
- XGBoost Data Iterator
-
xgb.get.DMatrix.data()
- Get DMatrix Data
-
xgb.get.DMatrix.num.non.missing()
- Get Number of Non-Missing Entries in DMatrix
-
xgb.ExtMemDMatrix()
- DMatrix from External Data
-
xgb.QuantileDMatrix.from_iterator()
- QuantileDMatrix from External Data
-
xgb.get.DMatrix.qcut()
- Get Quantile Cuts from DMatrix
-
xgb.slice.DMatrix()
`[`(<xgb.DMatrix>)
- Slice DMatrix
-
a-compatibility-note-for-saveRDS-save
- Model Serialization and Compatibility
-
coef(<xgb.Booster>)
- Extract coefficients from linear booster
-
predict(<xgb.Booster>)
- Predict method for XGBoost model
-
print(<xgb.Booster>)
- Print xgb.Booster
-
xgb.load()
- Load XGBoost model from binary file
-
xgb.load.raw()
- Load serialised XGBoost model from R's raw vector
-
xgb.save()
- Save XGBoost model to binary file
-
xgb.save.raw()
- Save XGBoost model to R's raw vector
-
xgb.copy.Booster()
- Deep-copies a Booster Object
-
xgb.slice.Booster()
`[`(<xgb.Booster>)
- Slice Booster by Rounds
-
xgb.get.num.boosted.rounds()
length(<xgb.Booster>)
- Get number of boosting in a fitted booster
-
xgb.is.same.Booster()
- Check if two boosters share the same C object
-
xgb.importance()
- Feature importance
-
xgb.attr()
`xgb.attr<-`()
xgb.attributes()
`xgb.attributes<-`()
- Accessors for serializable attributes of a model
-
xgb.create.features()
- Create new features from a previously learned model
-
xgb.model.dt.tree()
- Parse model text dump
-
`xgb.model.parameters<-`()
- Accessors for model parameters
-
xgb.ggplot.deepness()
xgb.plot.deepness()
- Plot model tree depth
-
xgb.dump()
- Dump an XGBoost model in text format.
-
variable.names(<xgb.Booster>)
- Get Features Names from Booster
-
xgb.ggplot.importance()
xgb.plot.importance()
- Plot feature importance
-
xgb.plot.multi.trees()
- Project all trees on one tree
-
xgb.plot.shap()
- SHAP dependence plots
-
xgb.ggplot.shap.summary()
xgb.plot.shap.summary()
- SHAP summary plot
-
xgb.plot.tree()
- Plot boosted trees
-
xgb.gblinear.history()
- Extract gblinear coefficients history
-
xgb.Callback()
- XGBoost Callback Constructor
-
xgb.cb.cv.predict()
- Callback for returning cross-validation based predictions
-
xgb.cb.early.stop()
- Callback to activate early stopping
-
xgb.cb.evaluation.log()
- Callback for logging the evaluation history
-
xgb.cb.gblinear.history()
- Callback for collecting coefficients history of a gblinear booster
-
xgb.cb.print.evaluation()
- Callback for printing the result of evaluation
-
xgb.cb.reset.parameters()
- Callback for resetting booster parameters at each iteration
-
xgb.cb.save.model()
- Callback for saving a model file
-
xgb.params()
- XGBoost Parameters
-
xgb.train()
- Fit XGBoost Model
-
xgb.cv()
- Cross Validation
-
print(<xgb.cv.synchronous>)
- Print xgb.cv result
-
xgboost-options
- XGBoost Options